extension | φ:Q→Aut N | d | ρ | Label | ID |
C62.1C23 = Dic6.24D6 | φ: C23/C1 → C23 ⊆ Aut C62 | 48 | 8- | C6^2.1C2^3 | 288,957 |
C62.2C23 = S3×D4⋊2S3 | φ: C23/C1 → C23 ⊆ Aut C62 | 48 | 8- | C6^2.2C2^3 | 288,959 |
C62.3C23 = Dic6⋊12D6 | φ: C23/C1 → C23 ⊆ Aut C62 | 24 | 8+ | C6^2.3C2^3 | 288,960 |
C62.4C23 = D12⋊12D6 | φ: C23/C1 → C23 ⊆ Aut C62 | 48 | 8- | C6^2.4C2^3 | 288,961 |
C62.5C23 = D12⋊13D6 | φ: C23/C1 → C23 ⊆ Aut C62 | 24 | 8+ | C6^2.5C2^3 | 288,962 |
C62.6C23 = C62.6C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.6C2^3 | 288,484 |
C62.7C23 = Dic3⋊5Dic6 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.7C2^3 | 288,485 |
C62.8C23 = C62.8C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.8C2^3 | 288,486 |
C62.9C23 = C62.9C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.9C2^3 | 288,487 |
C62.10C23 = C62.10C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.10C2^3 | 288,488 |
C62.11C23 = C62.11C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.11C2^3 | 288,489 |
C62.12C23 = Dic3×Dic6 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.12C2^3 | 288,490 |
C62.13C23 = C62.13C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.13C2^3 | 288,491 |
C62.14C23 = Dic3⋊6Dic6 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.14C2^3 | 288,492 |
C62.15C23 = Dic3.Dic6 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.15C2^3 | 288,493 |
C62.16C23 = C62.16C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.16C2^3 | 288,494 |
C62.17C23 = C62.17C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.17C2^3 | 288,495 |
C62.18C23 = C62.18C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.18C2^3 | 288,496 |
C62.19C23 = C62.19C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.19C2^3 | 288,497 |
C62.20C23 = C62.20C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.20C2^3 | 288,498 |
C62.21C23 = D6⋊Dic6 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.21C2^3 | 288,499 |
C62.22C23 = Dic3.D12 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.22C2^3 | 288,500 |
C62.23C23 = C62.23C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.23C2^3 | 288,501 |
C62.24C23 = C62.24C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.24C2^3 | 288,502 |
C62.25C23 = C62.25C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.25C2^3 | 288,503 |
C62.26C23 = D6⋊6Dic6 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.26C2^3 | 288,504 |
C62.27C23 = D6⋊7Dic6 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.27C2^3 | 288,505 |
C62.28C23 = C62.28C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.28C2^3 | 288,506 |
C62.29C23 = C62.29C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.29C2^3 | 288,507 |
C62.30C23 = C12.27D12 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.30C2^3 | 288,508 |
C62.31C23 = C62.31C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.31C2^3 | 288,509 |
C62.32C23 = C62.32C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.32C2^3 | 288,510 |
C62.33C23 = C62.33C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.33C2^3 | 288,511 |
C62.34C23 = C12.28D12 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.34C2^3 | 288,512 |
C62.35C23 = C62.35C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.35C2^3 | 288,513 |
C62.36C23 = Dic3⋊Dic6 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.36C2^3 | 288,514 |
C62.37C23 = C62.37C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.37C2^3 | 288,515 |
C62.38C23 = C62.38C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.38C2^3 | 288,516 |
C62.39C23 = C62.39C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.39C2^3 | 288,517 |
C62.40C23 = C62.40C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.40C2^3 | 288,518 |
C62.41C23 = C12.30D12 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.41C2^3 | 288,519 |
C62.42C23 = C62.42C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.42C2^3 | 288,520 |
C62.43C23 = C62.43C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.43C2^3 | 288,521 |
C62.44C23 = C62.44C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.44C2^3 | 288,522 |
C62.45C23 = C4×S3×Dic3 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.45C2^3 | 288,523 |
C62.46C23 = S3×Dic3⋊C4 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.46C2^3 | 288,524 |
C62.47C23 = C62.47C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.47C2^3 | 288,525 |
C62.48C23 = C62.48C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.48C2^3 | 288,526 |
C62.49C23 = C62.49C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.49C2^3 | 288,527 |
C62.50C23 = Dic3⋊4D12 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.50C2^3 | 288,528 |
C62.51C23 = C62.51C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.51C2^3 | 288,529 |
C62.52C23 = C4×C6.D6 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.52C2^3 | 288,530 |
C62.53C23 = C62.53C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.53C2^3 | 288,531 |
C62.54C23 = C62.54C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.54C2^3 | 288,532 |
C62.55C23 = C62.55C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.55C2^3 | 288,533 |
C62.56C23 = Dic3⋊D12 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.56C2^3 | 288,534 |
C62.57C23 = D6⋊1Dic6 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.57C2^3 | 288,535 |
C62.58C23 = C62.58C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.58C2^3 | 288,536 |
C62.59C23 = S3×C4⋊Dic3 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.59C2^3 | 288,537 |
C62.60C23 = D6.D12 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.60C2^3 | 288,538 |
C62.61C23 = D6.9D12 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.61C2^3 | 288,539 |
C62.62C23 = Dic3×D12 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.62C2^3 | 288,540 |
C62.63C23 = D6⋊2Dic6 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.63C2^3 | 288,541 |
C62.64C23 = Dic3⋊5D12 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.64C2^3 | 288,542 |
C62.65C23 = C62.65C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.65C2^3 | 288,543 |
C62.66C23 = D6⋊3Dic6 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.66C2^3 | 288,544 |
C62.67C23 = C62.67C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.67C2^3 | 288,545 |
C62.68C23 = D12⋊Dic3 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.68C2^3 | 288,546 |
C62.69C23 = D6⋊4Dic6 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.69C2^3 | 288,547 |
C62.70C23 = C62.70C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.70C2^3 | 288,548 |
C62.71C23 = C4×D6⋊S3 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.71C2^3 | 288,549 |
C62.72C23 = C62.72C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.72C2^3 | 288,550 |
C62.73C23 = C4×C3⋊D12 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.73C2^3 | 288,551 |
C62.74C23 = C62.74C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.74C2^3 | 288,552 |
C62.75C23 = C62.75C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.75C2^3 | 288,553 |
C62.76C23 = D6⋊D12 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.76C2^3 | 288,554 |
C62.77C23 = C62.77C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.77C2^3 | 288,555 |
C62.78C23 = D6⋊2D12 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.78C2^3 | 288,556 |
C62.79C23 = C12⋊7D12 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.79C2^3 | 288,557 |
C62.80C23 = Dic3⋊3D12 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.80C2^3 | 288,558 |
C62.81C23 = C12⋊D12 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.81C2^3 | 288,559 |
C62.82C23 = C62.82C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.82C2^3 | 288,560 |
C62.83C23 = C62.83C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.83C2^3 | 288,561 |
C62.84C23 = C62.84C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.84C2^3 | 288,562 |
C62.85C23 = C62.85C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.85C2^3 | 288,563 |
C62.86C23 = C12⋊2D12 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.86C2^3 | 288,564 |
C62.87C23 = C4×C32⋊2Q8 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.87C2^3 | 288,565 |
C62.88C23 = C12⋊3Dic6 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.88C2^3 | 288,566 |
C62.89C23 = C12⋊Dic6 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.89C2^3 | 288,567 |
C62.90C23 = S3×D6⋊C4 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.90C2^3 | 288,568 |
C62.91C23 = C62.91C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.91C2^3 | 288,569 |
C62.92C23 = D6⋊4D12 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.92C2^3 | 288,570 |
C62.93C23 = D6⋊5D12 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.93C2^3 | 288,571 |
C62.94C23 = C62.94C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.94C2^3 | 288,600 |
C62.95C23 = C62.95C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.95C2^3 | 288,601 |
C62.96C23 = C2×Dic32 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.96C2^3 | 288,602 |
C62.97C23 = C62.97C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.97C2^3 | 288,603 |
C62.98C23 = C62.98C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.98C2^3 | 288,604 |
C62.99C23 = C62.99C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.99C2^3 | 288,605 |
C62.100C23 = C62.100C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.100C2^3 | 288,606 |
C62.101C23 = C62.101C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.101C2^3 | 288,607 |
C62.102C23 = C2×D6⋊Dic3 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.102C2^3 | 288,608 |
C62.103C23 = C62.56D4 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.103C2^3 | 288,609 |
C62.104C23 = C62.57D4 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.104C2^3 | 288,610 |
C62.105C23 = C2×C6.D12 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.105C2^3 | 288,611 |
C62.106C23 = C62⋊3Q8 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.106C2^3 | 288,612 |
C62.107C23 = C2×Dic3⋊Dic3 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.107C2^3 | 288,613 |
C62.108C23 = C62.60D4 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.108C2^3 | 288,614 |
C62.109C23 = C2×C62.C22 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.109C2^3 | 288,615 |
C62.110C23 = S3×C6.D4 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.110C2^3 | 288,616 |
C62.111C23 = C62.111C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.111C2^3 | 288,617 |
C62.112C23 = C62.112C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.112C2^3 | 288,618 |
C62.113C23 = C62.113C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.113C2^3 | 288,619 |
C62.114C23 = Dic3×C3⋊D4 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.114C2^3 | 288,620 |
C62.115C23 = C62.115C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.115C2^3 | 288,621 |
C62.116C23 = C62.116C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 24 | | C6^2.116C2^3 | 288,622 |
C62.117C23 = C62.117C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.117C2^3 | 288,623 |
C62.118C23 = C62⋊4D4 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.118C2^3 | 288,624 |
C62.119C23 = C62⋊5D4 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.119C2^3 | 288,625 |
C62.120C23 = C62⋊6D4 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.120C2^3 | 288,626 |
C62.121C23 = C62.121C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.121C2^3 | 288,627 |
C62.122C23 = C62⋊7D4 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.122C2^3 | 288,628 |
C62.123C23 = C62⋊8D4 | φ: C23/C2 → C22 ⊆ Aut C62 | 24 | | C6^2.123C2^3 | 288,629 |
C62.124C23 = C62⋊4Q8 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.124C2^3 | 288,630 |
C62.125C23 = C62.125C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.125C2^3 | 288,631 |
C62.126C23 = C2×S3×Dic6 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.126C2^3 | 288,942 |
C62.127C23 = C2×D12⋊5S3 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.127C2^3 | 288,943 |
C62.128C23 = C2×D12⋊S3 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.128C2^3 | 288,944 |
C62.129C23 = D12.33D6 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | 4 | C6^2.129C2^3 | 288,945 |
C62.130C23 = D12.34D6 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | 4- | C6^2.130C2^3 | 288,946 |
C62.131C23 = C2×Dic3.D6 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.131C2^3 | 288,947 |
C62.132C23 = C2×D6.D6 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.132C2^3 | 288,948 |
C62.133C23 = C2×D6.6D6 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.133C2^3 | 288,949 |
C62.134C23 = S32×C2×C4 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.134C2^3 | 288,950 |
C62.135C23 = C2×S3×D12 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.135C2^3 | 288,951 |
C62.136C23 = C2×D6⋊D6 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.136C2^3 | 288,952 |
C62.137C23 = S3×C4○D12 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | 4 | C6^2.137C2^3 | 288,953 |
C62.138C23 = D12⋊23D6 | φ: C23/C2 → C22 ⊆ Aut C62 | 24 | 4 | C6^2.138C2^3 | 288,954 |
C62.139C23 = D12⋊24D6 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | 4 | C6^2.139C2^3 | 288,955 |
C62.140C23 = D12⋊27D6 | φ: C23/C2 → C22 ⊆ Aut C62 | 24 | 4+ | C6^2.140C2^3 | 288,956 |
C62.141C23 = C22×S3×Dic3 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.141C2^3 | 288,969 |
C62.142C23 = C2×D6.3D6 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.142C2^3 | 288,970 |
C62.143C23 = C2×D6.4D6 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.143C2^3 | 288,971 |
C62.144C23 = C22×C6.D6 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.144C2^3 | 288,972 |
C62.145C23 = C22×D6⋊S3 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.145C2^3 | 288,973 |
C62.146C23 = C22×C3⋊D12 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | | C6^2.146C2^3 | 288,974 |
C62.147C23 = C22×C32⋊2Q8 | φ: C23/C2 → C22 ⊆ Aut C62 | 96 | | C6^2.147C2^3 | 288,975 |
C62.148C23 = C32⋊2+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C62 | 24 | 4 | C6^2.148C2^3 | 288,978 |
C62.149C23 = C3×D4⋊6D6 | φ: C23/C2 → C22 ⊆ Aut C62 | 24 | 4 | C6^2.149C2^3 | 288,994 |
C62.150C23 = C3×S3×C4○D4 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | 4 | C6^2.150C2^3 | 288,998 |
C62.151C23 = C3×D4○D12 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | 4 | C6^2.151C2^3 | 288,999 |
C62.152C23 = C3×Q8○D12 | φ: C23/C2 → C22 ⊆ Aut C62 | 48 | 4 | C6^2.152C2^3 | 288,1000 |
C62.153C23 = C4○D4×C3⋊S3 | φ: C23/C2 → C22 ⊆ Aut C62 | 72 | | C6^2.153C2^3 | 288,1013 |
C62.154C23 = C62.154C23 | φ: C23/C2 → C22 ⊆ Aut C62 | 72 | | C6^2.154C2^3 | 288,1014 |
C62.155C23 = C32⋊92- 1+4 | φ: C23/C2 → C22 ⊆ Aut C62 | 144 | | C6^2.155C2^3 | 288,1015 |
C62.156C23 = C4○D4×C3×C6 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.156C2^3 | 288,1021 |
C62.157C23 = C32×2+ 1+4 | φ: C23/C22 → C2 ⊆ Aut C62 | 72 | | C6^2.157C2^3 | 288,1022 |
C62.158C23 = C32×2- 1+4 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.158C2^3 | 288,1023 |
C62.159C23 = C12×Dic6 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.159C2^3 | 288,639 |
C62.160C23 = C3×C12⋊2Q8 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.160C2^3 | 288,640 |
C62.161C23 = C3×C12.6Q8 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.161C2^3 | 288,641 |
C62.162C23 = S3×C4×C12 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.162C2^3 | 288,642 |
C62.163C23 = C3×C42⋊2S3 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.163C2^3 | 288,643 |
C62.164C23 = C12×D12 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.164C2^3 | 288,644 |
C62.165C23 = C3×C4⋊D12 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.165C2^3 | 288,645 |
C62.166C23 = C3×C42⋊7S3 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.166C2^3 | 288,646 |
C62.167C23 = C3×C42⋊3S3 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.167C2^3 | 288,647 |
C62.168C23 = C3×C23.16D6 | φ: C23/C22 → C2 ⊆ Aut C62 | 48 | | C6^2.168C2^3 | 288,648 |
C62.169C23 = C3×Dic3.D4 | φ: C23/C22 → C2 ⊆ Aut C62 | 48 | | C6^2.169C2^3 | 288,649 |
C62.170C23 = C3×C23.8D6 | φ: C23/C22 → C2 ⊆ Aut C62 | 48 | | C6^2.170C2^3 | 288,650 |
C62.171C23 = C3×S3×C22⋊C4 | φ: C23/C22 → C2 ⊆ Aut C62 | 48 | | C6^2.171C2^3 | 288,651 |
C62.172C23 = C3×Dic3⋊4D4 | φ: C23/C22 → C2 ⊆ Aut C62 | 48 | | C6^2.172C2^3 | 288,652 |
C62.173C23 = C3×D6⋊D4 | φ: C23/C22 → C2 ⊆ Aut C62 | 48 | | C6^2.173C2^3 | 288,653 |
C62.174C23 = C3×C23.9D6 | φ: C23/C22 → C2 ⊆ Aut C62 | 48 | | C6^2.174C2^3 | 288,654 |
C62.175C23 = C3×Dic3⋊D4 | φ: C23/C22 → C2 ⊆ Aut C62 | 48 | | C6^2.175C2^3 | 288,655 |
C62.176C23 = C3×C23.11D6 | φ: C23/C22 → C2 ⊆ Aut C62 | 48 | | C6^2.176C2^3 | 288,656 |
C62.177C23 = C3×C23.21D6 | φ: C23/C22 → C2 ⊆ Aut C62 | 48 | | C6^2.177C2^3 | 288,657 |
C62.178C23 = C3×Dic6⋊C4 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.178C2^3 | 288,658 |
C62.179C23 = C3×C12⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.179C2^3 | 288,659 |
C62.180C23 = C3×Dic3.Q8 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.180C2^3 | 288,660 |
C62.181C23 = C3×C4.Dic6 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.181C2^3 | 288,661 |
C62.182C23 = C3×S3×C4⋊C4 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.182C2^3 | 288,662 |
C62.183C23 = C3×C4⋊C4⋊7S3 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.183C2^3 | 288,663 |
C62.184C23 = C3×Dic3⋊5D4 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.184C2^3 | 288,664 |
C62.185C23 = C3×D6.D4 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.185C2^3 | 288,665 |
C62.186C23 = C3×C12⋊D4 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.186C2^3 | 288,666 |
C62.187C23 = C3×D6⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.187C2^3 | 288,667 |
C62.188C23 = C3×C4.D12 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.188C2^3 | 288,668 |
C62.189C23 = C3×C4⋊C4⋊S3 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.189C2^3 | 288,669 |
C62.190C23 = Dic3×C2×C12 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.190C2^3 | 288,693 |
C62.191C23 = C6×Dic3⋊C4 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.191C2^3 | 288,694 |
C62.192C23 = C3×C12.48D4 | φ: C23/C22 → C2 ⊆ Aut C62 | 48 | | C6^2.192C2^3 | 288,695 |
C62.193C23 = C6×C4⋊Dic3 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.193C2^3 | 288,696 |
C62.194C23 = C3×C23.26D6 | φ: C23/C22 → C2 ⊆ Aut C62 | 48 | | C6^2.194C2^3 | 288,697 |
C62.195C23 = C6×D6⋊C4 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.195C2^3 | 288,698 |
C62.196C23 = C12×C3⋊D4 | φ: C23/C22 → C2 ⊆ Aut C62 | 48 | | C6^2.196C2^3 | 288,699 |
C62.197C23 = C3×C23.28D6 | φ: C23/C22 → C2 ⊆ Aut C62 | 48 | | C6^2.197C2^3 | 288,700 |
C62.198C23 = C3×C12⋊7D4 | φ: C23/C22 → C2 ⊆ Aut C62 | 48 | | C6^2.198C2^3 | 288,701 |
C62.199C23 = C3×D4×Dic3 | φ: C23/C22 → C2 ⊆ Aut C62 | 48 | | C6^2.199C2^3 | 288,705 |
C62.200C23 = C3×C23.23D6 | φ: C23/C22 → C2 ⊆ Aut C62 | 48 | | C6^2.200C2^3 | 288,706 |
C62.201C23 = C3×C23.12D6 | φ: C23/C22 → C2 ⊆ Aut C62 | 48 | | C6^2.201C2^3 | 288,707 |
C62.202C23 = C3×C23⋊2D6 | φ: C23/C22 → C2 ⊆ Aut C62 | 48 | | C6^2.202C2^3 | 288,708 |
C62.203C23 = C3×D6⋊3D4 | φ: C23/C22 → C2 ⊆ Aut C62 | 48 | | C6^2.203C2^3 | 288,709 |
C62.204C23 = C3×C23.14D6 | φ: C23/C22 → C2 ⊆ Aut C62 | 48 | | C6^2.204C2^3 | 288,710 |
C62.205C23 = C3×C12⋊3D4 | φ: C23/C22 → C2 ⊆ Aut C62 | 48 | | C6^2.205C2^3 | 288,711 |
C62.206C23 = C3×Dic3⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.206C2^3 | 288,715 |
C62.207C23 = C3×Q8×Dic3 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.207C2^3 | 288,716 |
C62.208C23 = C3×D6⋊3Q8 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.208C2^3 | 288,717 |
C62.209C23 = C3×C12.23D4 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.209C2^3 | 288,718 |
C62.210C23 = C6×C6.D4 | φ: C23/C22 → C2 ⊆ Aut C62 | 48 | | C6^2.210C2^3 | 288,723 |
C62.211C23 = C3×C24⋊4S3 | φ: C23/C22 → C2 ⊆ Aut C62 | 24 | | C6^2.211C2^3 | 288,724 |
C62.212C23 = C4×C32⋊4Q8 | φ: C23/C22 → C2 ⊆ Aut C62 | 288 | | C6^2.212C2^3 | 288,725 |
C62.213C23 = C12⋊6Dic6 | φ: C23/C22 → C2 ⊆ Aut C62 | 288 | | C6^2.213C2^3 | 288,726 |
C62.214C23 = C12.25Dic6 | φ: C23/C22 → C2 ⊆ Aut C62 | 288 | | C6^2.214C2^3 | 288,727 |
C62.215C23 = C42×C3⋊S3 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.215C2^3 | 288,728 |
C62.216C23 = C122⋊16C2 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.216C2^3 | 288,729 |
C62.217C23 = C4×C12⋊S3 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.217C2^3 | 288,730 |
C62.218C23 = C12⋊4D12 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.218C2^3 | 288,731 |
C62.219C23 = C122⋊6C2 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.219C2^3 | 288,732 |
C62.220C23 = C122⋊2C2 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.220C2^3 | 288,733 |
C62.221C23 = C62.221C23 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.221C2^3 | 288,734 |
C62.222C23 = C62⋊6Q8 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.222C2^3 | 288,735 |
C62.223C23 = C62.223C23 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.223C2^3 | 288,736 |
C62.224C23 = C22⋊C4×C3⋊S3 | φ: C23/C22 → C2 ⊆ Aut C62 | 72 | | C6^2.224C2^3 | 288,737 |
C62.225C23 = C62.225C23 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.225C2^3 | 288,738 |
C62.226C23 = C62⋊12D4 | φ: C23/C22 → C2 ⊆ Aut C62 | 72 | | C6^2.226C2^3 | 288,739 |
C62.227C23 = C62.227C23 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.227C2^3 | 288,740 |
C62.228C23 = C62.228C23 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.228C2^3 | 288,741 |
C62.229C23 = C62.229C23 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.229C2^3 | 288,742 |
C62.230C23 = C62.69D4 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.230C2^3 | 288,743 |
C62.231C23 = C62.231C23 | φ: C23/C22 → C2 ⊆ Aut C62 | 288 | | C6^2.231C2^3 | 288,744 |
C62.232C23 = C12⋊2Dic6 | φ: C23/C22 → C2 ⊆ Aut C62 | 288 | | C6^2.232C2^3 | 288,745 |
C62.233C23 = C62.233C23 | φ: C23/C22 → C2 ⊆ Aut C62 | 288 | | C6^2.233C2^3 | 288,746 |
C62.234C23 = C62.234C23 | φ: C23/C22 → C2 ⊆ Aut C62 | 288 | | C6^2.234C2^3 | 288,747 |
C62.235C23 = C4⋊C4×C3⋊S3 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.235C2^3 | 288,748 |
C62.236C23 = C62.236C23 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.236C2^3 | 288,749 |
C62.237C23 = C62.237C23 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.237C2^3 | 288,750 |
C62.238C23 = C62.238C23 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.238C2^3 | 288,751 |
C62.239C23 = C12⋊3D12 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.239C2^3 | 288,752 |
C62.240C23 = C62.240C23 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.240C2^3 | 288,753 |
C62.241C23 = C12.31D12 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.241C2^3 | 288,754 |
C62.242C23 = C62.242C23 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.242C2^3 | 288,755 |
C62.243C23 = C2×C4×C3⋊Dic3 | φ: C23/C22 → C2 ⊆ Aut C62 | 288 | | C6^2.243C2^3 | 288,779 |
C62.244C23 = C2×C6.Dic6 | φ: C23/C22 → C2 ⊆ Aut C62 | 288 | | C6^2.244C2^3 | 288,780 |
C62.245C23 = C62⋊10Q8 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.245C2^3 | 288,781 |
C62.246C23 = C2×C12⋊Dic3 | φ: C23/C22 → C2 ⊆ Aut C62 | 288 | | C6^2.246C2^3 | 288,782 |
C62.247C23 = C62.247C23 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.247C2^3 | 288,783 |
C62.248C23 = C2×C6.11D12 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.248C2^3 | 288,784 |
C62.249C23 = C4×C32⋊7D4 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.249C2^3 | 288,785 |
C62.250C23 = C62.129D4 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.250C2^3 | 288,786 |
C62.251C23 = C62⋊19D4 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.251C2^3 | 288,787 |
C62.252C23 = D4×C3⋊Dic3 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.252C2^3 | 288,791 |
C62.253C23 = C62.72D4 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.253C2^3 | 288,792 |
C62.254C23 = C62.254C23 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.254C2^3 | 288,793 |
C62.255C23 = C62⋊13D4 | φ: C23/C22 → C2 ⊆ Aut C62 | 72 | | C6^2.255C2^3 | 288,794 |
C62.256C23 = C62.256C23 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.256C2^3 | 288,795 |
C62.257C23 = C62⋊14D4 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.257C2^3 | 288,796 |
C62.258C23 = C62.258C23 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.258C2^3 | 288,797 |
C62.259C23 = C62.259C23 | φ: C23/C22 → C2 ⊆ Aut C62 | 288 | | C6^2.259C2^3 | 288,801 |
C62.260C23 = Q8×C3⋊Dic3 | φ: C23/C22 → C2 ⊆ Aut C62 | 288 | | C6^2.260C2^3 | 288,802 |
C62.261C23 = C62.261C23 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.261C2^3 | 288,803 |
C62.262C23 = C62.262C23 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.262C2^3 | 288,804 |
C62.263C23 = C2×C62⋊5C4 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.263C2^3 | 288,809 |
C62.264C23 = C62⋊24D4 | φ: C23/C22 → C2 ⊆ Aut C62 | 72 | | C6^2.264C2^3 | 288,810 |
C62.265C23 = C2×C6×Dic6 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.265C2^3 | 288,988 |
C62.266C23 = S3×C22×C12 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.266C2^3 | 288,989 |
C62.267C23 = C2×C6×D12 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.267C2^3 | 288,990 |
C62.268C23 = C6×C4○D12 | φ: C23/C22 → C2 ⊆ Aut C62 | 48 | | C6^2.268C2^3 | 288,991 |
C62.269C23 = C6×D4⋊2S3 | φ: C23/C22 → C2 ⊆ Aut C62 | 48 | | C6^2.269C2^3 | 288,993 |
C62.270C23 = S3×C6×Q8 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.270C2^3 | 288,995 |
C62.271C23 = C6×Q8⋊3S3 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.271C2^3 | 288,996 |
C62.272C23 = C3×Q8.15D6 | φ: C23/C22 → C2 ⊆ Aut C62 | 48 | 4 | C6^2.272C2^3 | 288,997 |
C62.273C23 = Dic3×C22×C6 | φ: C23/C22 → C2 ⊆ Aut C62 | 96 | | C6^2.273C2^3 | 288,1001 |
C62.274C23 = C22×C32⋊4Q8 | φ: C23/C22 → C2 ⊆ Aut C62 | 288 | | C6^2.274C2^3 | 288,1003 |
C62.275C23 = C22×C4×C3⋊S3 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.275C2^3 | 288,1004 |
C62.276C23 = C22×C12⋊S3 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.276C2^3 | 288,1005 |
C62.277C23 = C2×C12.59D6 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.277C2^3 | 288,1006 |
C62.278C23 = C2×C12.D6 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.278C2^3 | 288,1008 |
C62.279C23 = C32⋊82+ 1+4 | φ: C23/C22 → C2 ⊆ Aut C62 | 72 | | C6^2.279C2^3 | 288,1009 |
C62.280C23 = C2×Q8×C3⋊S3 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.280C2^3 | 288,1010 |
C62.281C23 = C2×C12.26D6 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.281C2^3 | 288,1011 |
C62.282C23 = C32⋊72- 1+4 | φ: C23/C22 → C2 ⊆ Aut C62 | 144 | | C6^2.282C2^3 | 288,1012 |
C62.283C23 = C23×C3⋊Dic3 | φ: C23/C22 → C2 ⊆ Aut C62 | 288 | | C6^2.283C2^3 | 288,1016 |
C62.284C23 = C22⋊C4×C3×C6 | central extension (φ=1) | 144 | | C6^2.284C2^3 | 288,812 |
C62.285C23 = C4⋊C4×C3×C6 | central extension (φ=1) | 288 | | C6^2.285C2^3 | 288,813 |
C62.286C23 = C32×C42⋊C2 | central extension (φ=1) | 144 | | C6^2.286C2^3 | 288,814 |
C62.287C23 = D4×C3×C12 | central extension (φ=1) | 144 | | C6^2.287C2^3 | 288,815 |
C62.288C23 = Q8×C3×C12 | central extension (φ=1) | 288 | | C6^2.288C2^3 | 288,816 |
C62.289C23 = C32×C22≀C2 | central extension (φ=1) | 72 | | C6^2.289C2^3 | 288,817 |
C62.290C23 = C32×C4⋊D4 | central extension (φ=1) | 144 | | C6^2.290C2^3 | 288,818 |
C62.291C23 = C32×C22⋊Q8 | central extension (φ=1) | 144 | | C6^2.291C2^3 | 288,819 |
C62.292C23 = C32×C22.D4 | central extension (φ=1) | 144 | | C6^2.292C2^3 | 288,820 |
C62.293C23 = C32×C4.4D4 | central extension (φ=1) | 144 | | C6^2.293C2^3 | 288,821 |
C62.294C23 = C32×C42.C2 | central extension (φ=1) | 288 | | C6^2.294C2^3 | 288,822 |
C62.295C23 = C32×C42⋊2C2 | central extension (φ=1) | 144 | | C6^2.295C2^3 | 288,823 |
C62.296C23 = C32×C4⋊1D4 | central extension (φ=1) | 144 | | C6^2.296C2^3 | 288,824 |
C62.297C23 = C32×C4⋊Q8 | central extension (φ=1) | 288 | | C6^2.297C2^3 | 288,825 |
C62.298C23 = Q8×C62 | central extension (φ=1) | 288 | | C6^2.298C2^3 | 288,1020 |